近日,hbs红宝石平台白凤武教授研究团队在化学工程领域顶刊Chemical Engineering Journal发表题为A double-chamber microbial electrolysis cell improved the anaerobic digestion efficiency and elucidated the underlying bio-electrochemical mechanism的研究成果。生命科学技术学院刘晨光副教授为论文的通讯作者,博士生敖天杰为论文的第一作者。
绿色生物制造以木质纤维素为原料,具有低碳可再生的优点,但是高固含物的废水处理成为影响其过程经济性的主要难点。电化学厌氧系统(MEC-AD)仅需提供少量电能即可显著提升发酵性能。然而,之前MEC-AD研究大多使用单腔电化学反应器,由于阴阳两极共处一室,不仅无法明确两极各自的贡献,还存在物料和菌种混流影响发酵效率的问题。团队首次使用双腔构造分隔MEC-AD系统阴极与阳极,探究两极各自的功能微生物群落迁移变化及对厌氧消化系统的影响(图1)。在外加电压0.6 V时,系统甲烷产量提高了80.4%。阳极富集的肠球菌(Enterococcus)等电活性细菌加速了秸秆降解,增强了阳极腔中以产甲烷八叠球菌(Methanosarcina)为主的混合营养性产甲烷过程。阴极腔中肠球菌和产甲烷杆菌(Methanobacterium)通过微生物种间直接电子传递的方式进行互营共生,增强了氢营养性产甲烷过程。
图1. 双腔电化学厌氧系统(MEC-AD)提升秸秆废水厌氧消化性能及其机理解析
团队长期针对木质纤维素利用的瓶颈问题展开研究,2023年,刘晨光已陆续发表了系列研究工作,如开发了高产琥珀酸的谷棒杆菌进行碳固定(Bioresource Technol 2023, 378, 128991)、采用人工智能算法优化混合糖发酵工艺(Bioresource Technol 2023, 385, 129375)、使用电能驱动提升运动发酵单胞菌的乙醇生产性能(ACS Sustainable Chem Eng 2023, 11, 2364-74)。这些研究为降低木质纤维素糖成本、提升全产业链经济指标做出了贡献。
该研究获得国家重点研发计划(2021YFC2101300)和国家自然科学基金委员会(21978167)的资助。
论文链接:https://doi.org/10.1016/j.cej.2023.144228