Abstract:
We have previously developed a series of high-throughput screening (HTS) methods based on CRISPR/Cas9 system for the functional identification of protein-coding genes and long non-coding RNAs. We have also re-designed sgRNA scaffold that greatly boosts the efficiency and data quality for HTS. Our recent efforts include the identification of functional 3D-hubs that were essential for cell viability, the development of a new approach for mapping functional sites of protein of interest at single amino acid resolution, and a series of novel high-throughput strategies derived from base editors. Besides these high-throughput strategies to facilitate the accurate and rapid identification of functional genomic elements in various settings, we have recently developed a novel programmable RNA editing strategy called LEAPER. Unlike conventional nucleic acid editing technology that requires simultaneous delivery of editing enzymes (such as Cas protein) and guide RNAs into cells, LEAPER enables precise and efficient RNA editing by recruiting endogenous cellular deaminase using engineered RNAs.